Corrigé de l'exercice 1

1. Soit FKA un triangle rectangle en K tel que : $FA = 15 \text{ cm}$ et $AK = 4,2 \text{ cm}$. Calculer la longueur FK.

Le triangle FKA est rectangle en K.
Son hypoténuse est $[FA]$.
D’après le théorème de Pythagore :

\[
FA^2 = AK^2 + FK^2 \\
FK^2 = FA^2 - AK^2 \quad \text{(On cherche FK)} \\
FK^2 = 15^2 - 4,2^2 \\
FK^2 = 225 - 17,64 \\
FK^2 = 207,36
\]

Donc $FK = \sqrt{207,36} = 14,4 \text{ cm}$

2. Soit ZTX un triangle rectangle en X tel que : $TX = 1,5 \text{ cm}$ et $ZX = 3,6 \text{ cm}$. Calculer la longueur ZT.

Le triangle ZTX est rectangle en X.
Son hypoténuse est $[ZT]$.
D’après le théorème de Pythagore :

\[
ZT^2 = TX^2 + ZX^2 \\
ZT^2 = 1,5^2 + 3,6^2 \\
ZT^2 = 2,25 + 12,96 \\
ZT^2 = 15,21
\]

Donc $ZT = \sqrt{15,21} = 3,9 \text{ cm}$

Corrigé de l'exercice 2

Soit HWJ un triangle tel que : $WH = 2,8 \text{ cm}$, $WJ = 3,5 \text{ cm}$ et $JH = 2,1 \text{ cm}$. Quelle est la nature du triangle HWJ?

Le triangle HWJ n’est ni isocèle, ni équilatéral.

\[
\begin{align*}
&WJ^2 = 3,5^2 = 12,25 \quad (\text{[WJ] est le plus grand côté}) \\
&JH^2 + WH^2 = 2,1^2 + 2,8^2 = 12,25
\end{align*}
\]

D’après la réciproque du théorème de Pythagore, le triangle HWJ est rectangle en H.

Corrigé de l'exercice 3
(C) est un cercle de diamètre $[MS]$ et V est un point de (C).
On donne $SV = 4,8$ cm et $MS = 7,3$ cm.
Calculer la longueur MV.

$[MS]$ est le diamètre du cercle circonscrit au triangle VMS.

Donc le triangle VMS est rectangle en V.

D’après le théorème de Pythagore :

$MS^2 = SV^2 + MV^2$ (car $[MS]$ est l’hypoténuse)

$MV^2 = MS^2 - SV^2$ (On cherche MV)

$MV^2 = 7,3^2 - 4,8^2$

$MV^2 = 53,29 - 23,04$

$MV^2 = 30,25$

Donc $MV = \sqrt{30,25} = 5,5$ cm

Corrigé de l’exercice 4

Sur la figure ci-contre, les droites (ZI) et (ES) sont parallèles.
On donne $BE = 5,2$ cm, $BS = 3,7$ cm, $ES = 5,5$ cm et $EZ = 5,2$ cm.
Calculer BI et ZI.

Dans le triangle BZI, E est sur le côté $[BZ]$, S est sur le côté $[BI]$ et les droites (ZI) et (ES) sont parallèles.

D’après le théorème de Thalès :

\[
\frac{BZ}{BE} = \frac{BI}{BS} = \frac{ZI}{ES}
\]

De plus $BZ = EZ + BE = 10,4$ cm

\[
\frac{10,4}{5,2} = \frac{BI}{3,7} = \frac{ZI}{5,5}
\]

\[
\frac{10,4}{5,2} = \frac{BI}{3,7} \quad \text{donc} \quad BI = \frac{3,7 \times 10,4}{5,2} = 7,4$ cm
\]

\[
\frac{10,4}{5,2} = \frac{ZI}{5,5} \quad \text{donc} \quad ZI = \frac{5,5 \times 10,4}{5,2} = 11$ cm
\]

Corrigé de l’exercice 5

1. HNY est un triangle rectangle en Y tel que :

$NH = 4,2$ cm et $YN = 75\text{°}$.
Calculer la longueur YN.

Dans le triangle HNY rectangle en Y,

\[
\cos \frac{YN}{NH} = \frac{YN}{NH}
\]
\[\cos 75 = \frac{Y N}{4,2} \]

\[Y N = \cos 75 \times 4,2 \simeq 1,08 \text{ cm} \]

2. \(XVJ \) est un triangle rectangle en \(X \) tel que:

\(XV = 6,9 \text{ cm et } VJ = 7,8 \text{ cm.} \)

Calculer la mesure de l’angle \(\overrightarrow{XVJ} \).

Dans le triangle \(XVJ \) rectangle en \(X \),

\[\cos \overrightarrow{XVJ} = \frac{XV}{VJ} \]

\[\cos \overrightarrow{XVJ} = \frac{6,9}{7,8} \]

\[\overrightarrow{XVJ} = \cos^{-1} \left(\frac{6,9}{7,8} \right) \simeq 27,7^\circ \]