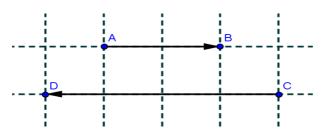
Correction Devoir commun de Mathématiques

Seconde

EXERCICE 1:

1°) FAUX.

En effet, les vecteurs peuvent être de sens contraire.



- 2°) Pour tout x réel, $x^2 \ge 0$ et donc $x^2 + 1 > 0$. Ainsi, quand x < 0, on a $x(x^2 + 1) < 0$. Donc **VRAI**.
- 3°) 0 est solution de la 1° inéquation car $0-7<3\times0$ mais pas de la 2° car 0 est la valeur interdite de l'expression $\frac{x-7}{3x}$ Donc **FAUX**.

4°) A l'aide d'un tableau de signes, on va déterminer le signe de l'expression $\frac{5x+1}{3-2x}$. Étudions le signe de chaque partie :

$$5x+1>0 \Leftrightarrow x>\frac{-1}{5}$$
; $5x+1=0 \Leftrightarrow x=\frac{-1}{5}$; $5x+1<0 \Leftrightarrow x<\frac{-1}{5}$
 $3-2x>0 \Leftrightarrow x<\frac{3}{2}$; $3-2x=0 \Leftrightarrow x=\frac{3}{2}$ (valeur interdite); $3-2x<0 \Leftrightarrow x>\frac{3}{2}$

x	∞	$-\frac{1}{5}$		$\frac{3}{2}$	+∞
Signe de $5x+1$	-	0	+		+
Signe de $3-2x$	+		+	0	-
Signe de $\frac{5x+1}{3-2x}$	-	0	+		-

Ainsi,
$$\frac{5x+1}{3-2x} \le 0$$
 sur $\left] -\infty; -\frac{1}{5} \right] \cup \left] \frac{3}{2}; +\infty \right[$. Donc, **VRAI**

EXERCICE 2:

Partie B

On sait que ABCD est un parallélogramme donc $\overrightarrow{AB} = \overrightarrow{DC}$

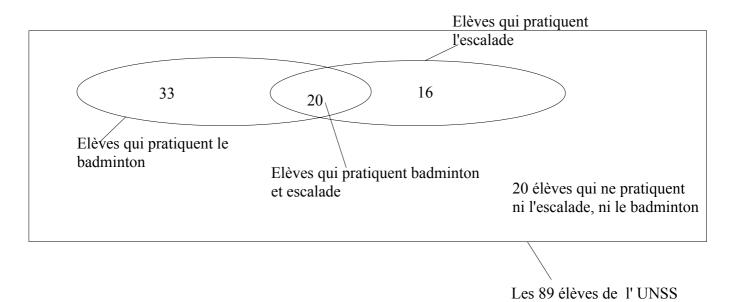
On sait que G est l'image de H par la translation de vecteur \overrightarrow{DC} . Donc $\overrightarrow{HG} = \overrightarrow{DC}$

On en conclue que (par transitivité) $\overrightarrow{AB} = \overrightarrow{DC} = \overrightarrow{HG}$

En particulier si $\overrightarrow{AB} = \overrightarrow{HG}$ alors ABGH est un parallélogramme.

EXERCICE 3:

1. On peut utiliser un diagramme de Venn pour comptabiliser les élèves dans les différentes pratiques.



- 2. D'après le schéma il y a 33 élèves qui ne pratiquent que le badminton.
- 3. D'après le schéma il y a 20 élèves qui ne pratiquent aucun de ces deux sports.

4.

a) $\overline{A}:$ « l'élève interrogé ne joue pas au badminton ».

 $A \cap B$: « l'élève interrogé joue au badminton et pratique l'escalade».

 $\overline{A \cup B}$: « l'élève interrogé ne joue ni au badminton ni ne pratique l'escalade».

b)
$$p(A \cup B) = p(A) + p(B) - p(A \cap B) = \frac{53}{89} + \frac{36}{89} - \frac{20}{89} = \frac{69}{89}$$

EXERCICE 4:

- 1. Graphiquement, il semble que l'ensemble des solutions soit à peu près]-1,3 ;1,3[
- 2. a) On développe l'expression :

$$3\left(x-\frac{4}{3}\right)(-x-1)=3\left(-x^2-x+\frac{4}{3}x+\frac{4}{3}\right) = -3x^2-3x+4x+4 = -3x^2+x+4$$

On reconnaît l'expression de g(x). On a donc bien $g(x)=3\left(x-\frac{4}{3}\right)(-x-1)$

b) En factorisant :
$$f(x)-g(x)=x-\frac{4}{3}-3\left(x-\frac{4}{3}\right)(-x-1) = \left(x-\frac{4}{3}\right)(1-3(-x-1))$$

= $\left(x-\frac{4}{3}\right)(1+3x+3) = \left(x-\frac{4}{3}\right)(3x+4)$

Donc on a bien $f(x)-g(x)=\left(x-\frac{4}{3}\right)(3x+4)$

c)
$$g(x) > f(x) \Leftrightarrow 0 > f(x) - g(x) \Leftrightarrow \left(x - \frac{4}{3}\right)(3x + 4) < 0$$

d) Pour résoudre l'inéquation on utilise un tableau de signes

on a
$$x - \frac{4}{3} < 0 \Leftrightarrow x < \frac{4}{3}$$
 et $3x + 4 < 0 \Leftrightarrow 3x < -4 \Leftrightarrow x < \frac{-4}{3}$

D'où le tableau:

x	∞	$\frac{-4}{3}$		4 /3	+∞
Signe de $x - \frac{4}{3}$	_		_	0	+
Signe de 3x+4	_	0	+		+
Signe de $\left(x-\frac{4}{3}\right)(3x+4)$	+	0	_	0	+

Donc l'inéquation g(x) > f(x) a pour solutions] $\frac{-4}{3}$; $\frac{4}{3}$ [

EXERCICE 5

Partie A

- 1. Il y a environ 84% des personnes interrogées qui disent dormir moins de 11h et environ 52% qui disent dormir moins de 7h. Comme 84 52 = 32, il y a environ 32% des personnes interrogées qui disent dormir entre 7h et 11h.
- 2. Le premier quartile vaut environ 5. Donc ceux dont le temps de sommeil est inférieur au 1^{er} quartile ont un temps de sommeil maximal de 5h.

Partie B:

La série est composée de 7 valeurs que l'on range dans l'ordre croissant.

La première valeur est la valeur minimale : 12.

La 7^{ème} valeur est la valeur maximale : 25 car l'étendue est de 13.

La médiane est la 4^{ème} valeur, car $\frac{7}{2}$ =3,5.

Ensuite $\frac{7}{4}$ =1,75 donc le 1^{er} quartile correspond à la 2^{ème} valeur.

Enfin $7 \times \frac{3}{4} = 5,25$ donc le $3^{\text{ème}}$ quartile correspond à la $6^{\text{ème}}$ valeur.

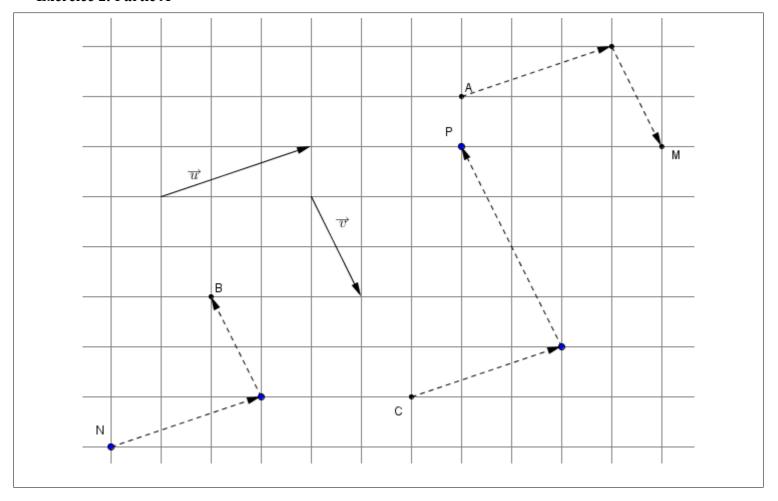
Ainsi on a déjà:

1 ^{ère} valeur	2 ^{ème} valeur	3 ^{ème} valeur	4 ^{ème} valeur	5 ^{ème} valeur	6ème valeur	7 ^{ème} valeur
12	18		20		22	25

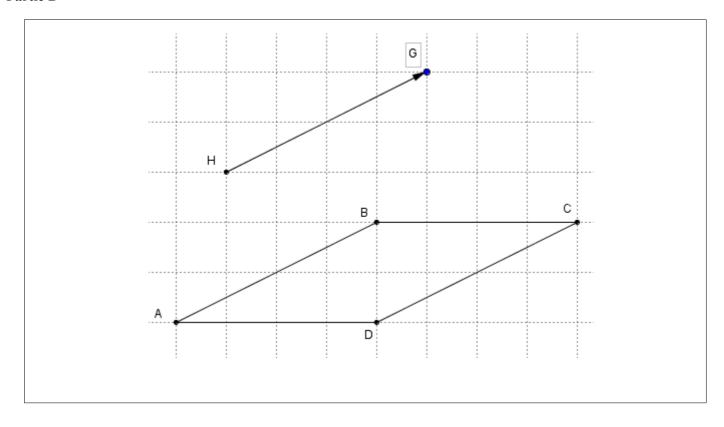
De plus comme on a ordonné la série et que Marc reçoit chaque jour un nombre différent de sms, on en déduit que la 3^{ème} valeur est 19 et la 5^{ème} valeur est 21.

Donc la série est : 12 - 18 - 19 - 20 - 21 - 22 - 25

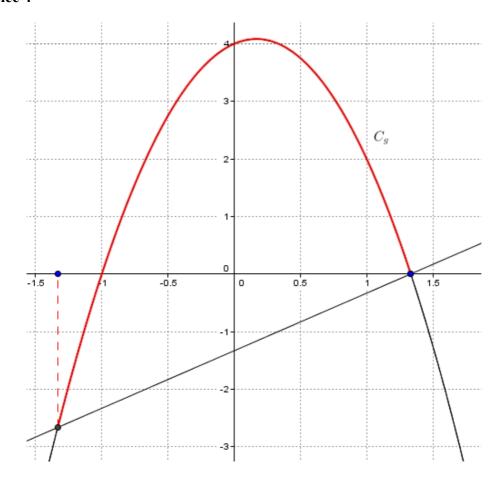
Exercice 2. Partie A



Partie B



Exercice 4



Exercice 5

