Exercice 1

- ▶1. On considère la fonction h définie sur I = [1 ; 10] par $h(x) = \frac{4x 3}{-5x 1}$.
 - a) Justifier que h est définie et dérivable sur I.
 - **b)** Déterminer h'(x) pour tout $x \in [1; 10]$.
 - c) En déduire le sens de variations de h sur I.
- ▶2. Étudier le sens de variations de p définie par $p(x) = 2x^3 18x^2 96x + 8$ sur [-10; 10].

Exercice 2

- ▶1. On considère la fonction h définie sur I = [-1; 10] par $h(x) = \frac{-5x + 2}{4x + 7}$.
 - a) Justifier que h est définie et dérivable sur I.
 - b) Déterminer h'(x) pour tout $x \in [-1; 10]$.
 - c) En déduire le sens de variations de h sur I.
- ▶2. Étudier le sens de variations de q définie par $q(x) = x^3 + \frac{3}{2}x^2 216x + 4$ sur [-10; 10].

Exercice 3

- ▶1. On considère la fonction k définie sur I = [-10; 3] par $k(t) = \frac{-3t+1}{2t-7}$.
 - a) Justifier que k est définie et dérivable sur I.
 - **b)** Déterminer k'(t) pour tout $t \in [-10; 3]$.
 - c) En déduire le sens de variations de k sur I.
- ▶2. Étudier le sens de variations de p définie par $p(x) = x^3 + \frac{27}{2}x^2 + 54x + 8$ sur [-10; 10].

Exercice 4

- ▶1. On considère la fonction k définie sur I = [0; 10] par $k(t) = \frac{-3t+6}{5t+5}$.
 - a) Justifier que k est définie et dérivable sur I.
 - **b)** Déterminer k'(t) pour tout $t \in [0; 10]$.
 - c) En déduire le sens de variations de k sur I.
- ▶2. Étudier le sens de variations de f définie par $f(x) = 2x^3 3x^2 12x 4$ sur [-10; 10].

Exercice 5

- ▶1. On considère la fonction h définie sur I = [0; 10] par $h(t) = \frac{-5t 5}{5t + 3}$.
 - a) Justifier que h est définie et dérivable sur I.
 - **b)** Déterminer h'(t) pour tout $t \in [0; 10]$.
 - c) En déduire le sens de variations de h sur I.
- ▶2. Étudier le sens de variations de k définie par $k(x) = x^3 + \frac{9}{2}x^2 + 6x 2$ sur [-10; 10].