
Corrigé de l'exercice 1

(C) est un cercle de diamètre [UT] et I est un point de (C).

On donne $UI = 16.8 \,\mathrm{cm}$ et $TI = 4.9 \,\mathrm{cm}$.

Calculer la longueur UT.

.....

[UT] est le diamètre du cercle circonscrit au triangle TUI.

Donc le triangle TUI est rectangle en I.

D'après le théorème de Pythagore :

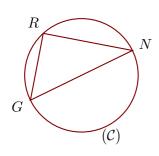
$$UT^2 = TI^2 + UI^2$$
 (car $[UT]$ est l'hypoténuse)

$$UT^2 = 4.9^2 + 16.8^2$$

$$UT^2 = 24,01 + 282,24$$

$$UT^2 = 306,25$$

Donc
$$UT = \sqrt{306,25} = 17,5 \,\mathrm{cm}$$


Corrigé de l'exercice 2

 (\mathcal{C}) est un cercle de diamètre [NG] et R est un point de (\mathcal{C}) .

On donne $NG = 2.5 \,\mathrm{cm}$ et $GR = 1.5 \,\mathrm{cm}$.

Calculer la longueur NR.

.....

[NG] est le diamètre du cercle circonscrit au triangle RGN.

Donc le triangle RGN est rectangle en R.

D'après le théorème de Pythagore :

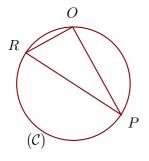
$$NG^2 = GR^2 + NR^2$$
 (car [NG] est l'hypoténuse)

$$NR^2 = NG^2 - GR^2$$
 (On cherche NR)

$$NR^2 = 2.5^2 - 1.5^2$$

$$NR^2 = 6.25 - 2.25$$

$$NR^2 = 4$$


Donc
$$NR = \sqrt{4} = 2 \,\mathrm{cm}$$

Corrigé de l'exercice 3

- (C) est un cercle de diamètre [PR] et O est un point de (C).
- On donne $PR = 13.6 \,\mathrm{cm}$ et $RO = 6.4 \,\mathrm{cm}$.

Calculer la longueur PO.

.....

[PR] est le diamètre du cercle circonscrit au triangle ROP.

Donc le triangle ROP est rectangle en O.

D'après le théorème de Pythagore :

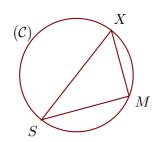
$$PR^2 = RO^2 + PO^2$$
 (car [PR] est l'hypoténuse)

$$PO^2 = PR^2 - RO^2$$
 (On cherche PO)

$$PO^2 = 13.6^2 - 6.4^2$$

$$PO^2 = 184,96 - 40,96$$

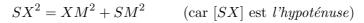
$$PO^2 = 144$$


Donc
$$PO = \sqrt{144} = 12 \,\mathrm{cm}$$

Corrigé de l'exercice 4

- (\mathcal{C}) est un cercle de diamètre [SX] et M est un point de (\mathcal{C}) .
- On donne $SX = 10.5 \,\mathrm{cm}$ et $SM = 8.4 \,\mathrm{cm}$.

Calculer la longueur XM.


.....

[SX] est le diamètre du cercle circonscrit au triangle SXM.

Donc le triangle SXM est rectangle en M.

D'après le théorème de Pythagore :

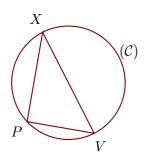
$$XM^2 = SX^2 - SM^2$$
 (On cherche XM)

$$XM^2 = 10.5^2 - 8.4^2$$

$$XM^2 = 110,25 - 70,56$$

$$XM^2 = 39,69$$

Donc
$$XM = \sqrt{39,69} = 6.3 \,\mathrm{cm}$$


Corrigé de l'exercice 5

(C) est un cercle de diamètre [XV] et P est un point de (C).

On donne $VP = 9.9 \,\mathrm{cm}$ et $XV = 16.5 \,\mathrm{cm}$.

Calculer la longueur XP.

[XV] est le diamètre du cercle circonscrit au triangle XVP.

Donc le triangle XVP est rectangle en P.

D'après le théorème de Pythagore :

$$XV^2 = VP^2 + XP^2$$
 (car [XV] est l'hypoténuse)

$$XP^2 = XV^2 - VP^2$$
 (On cherche XP)

$$XP^2 = 16.5^2 - 9.9^2$$

$$XP^2 = 272.25 - 98.01$$

$$XP^2 = 174,24$$

Donc
$$XP = \sqrt{174,24} = 13,2 \,\text{cm}$$