CORRECTION DU SUJET CENTRES ÉTRANGERS JUIN 2013

Correction de l'exercice 1

- 1. $U_1 = 0,875 U_0 + 1200 = 0,875 \times 40\,000 + 1200 = 36\,200 \text{ donc } U_1 = 36\,200$. La bonne réponse est donc la réponse
- 2. On note que $U_n = V_n + 9600$.

 $V_{n+1} = U_{n+1} - 9\,600 = 0,875 \times U_n + 1\,200 - 9\,600 = 0,875 \times (V_n + 9\,600) - 8\,400 = 0,875 \times V_n + 8\,400 - 8\,400$ donc $V_{n+1} = 0,875 \times V_n$ donc la suite (V_n) est une suite géométrique de raison 0,875. La bonne réponse est la réponse **b**.

Le premier terme est donc $V_0 = U_0 - 9600 = 40000 - 9600 = 30400$

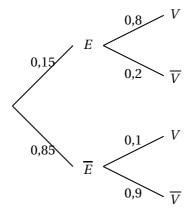
3. On peut donc en déduire que pour tout entier naturel n, $V_n = 30400 \times 0,875^n$, or $U_n = V_n + 9600$ donc $U_n = 30400 \times 0,875^n + 9600$.

Notons que 0 < 0,875 < 1 donc $\lim_{n \to +\infty} 0,875^n = 0$ donc $\lim_{n \to +\infty} U_n = 9600$. La bonne réponse est la réponse **d**.

- 4. La bonne réponse est la réponse c.
- 5. $U_{32} = 30400 \times 0,875^{32} + 9600 \approx 10024 > 10000$ et $U_{33} = 30400 \times 0,875^{33} + 9600 \approx 9971 < 10000$ donc la valeur affichée est la valeur de N égale à $\boxed{33}$. La bonne réponse est la réponse **a**.

Correction de l'exercice 2

- 1. On sait que
 - 15% des sacs sont vendus directement dans l'exploitation agricole et le reste est vendu dans des supermarchés donc p(E) = 0.15 et $p(\overline{E}) = 0.85$.
 - Parmi les sacs vendus directement dans l'exploitation agricole, 80% contiennent des pommes de variétés différentes et les autres ne contiennent qu'un seul type de pommes donc $p_E(V) = 0.8$ et $p_E(\overline{V}) = 0.2$.
 - Parmi les sacs vendus dans des supermarchés, 10% contiennent des pommes de variétés différentes et les autres ne contiennent qu'un seul type de pommes donc $p_{\overline{E}}(V) = 0, 1$ et $p_{\overline{E}}(\overline{V}) = 0, 9$.
- 2. L'arbre est donc



- 3. $E \cap V$ est le sac de pommes est vendu dans l'exploitation agricole **et** les pommes sont de variétés différentes. $p(E \cap V) = p(E) \times p_E(V) = 0,15 \times 0,8 = 0,12$ donc $p(E \cap V) = 0,12$.
- 4. $p(V) = p(E \cap V) + p(\overline{E} \cap V) = 0,12 + p(\overline{E}) \times p_{\overline{E}}(V) = 0,12 + 0,85 \times 0,1 = 0,205 \text{ donc } p(V) = 0,205$
- 5. Notons que $p(\overline{V}) = 1 p(V) = 0,795$.

On cherche $p_{\overline{V}}(E) = \frac{p(E \cap \overline{V})}{p(\overline{V})} = \frac{0.15 \times 0.2}{0.795} \approx 0.038 \text{ donc } p_{\overline{V}}(E) \approx 0.038.$

6. Un sac de pommes est donc vendu en moyenne, en euros,

 $0.8 \times p(E) + 3.40 \times p(\overline{E}) = 0.8 \times 0.15 + 3.40 \times 0.85$ soit 3.01 euros en moyenne

donc pour 45 000 sacs les producteurs peuvent prévoir un montant de 45 000 × 3,01 soit un montant de 135 450 euros

Correction de l'exercice 3

1. On note que la fonction f est du type $\frac{u}{v}$, la dérivée est donc $\frac{u \times v - u \times v}{v^2}$.

$$f'(x) = \frac{(-2x+10) \times x^2 - (-x^2+10x-16) \times 2x}{(x^2)^2} = \frac{-2x^3+10x^2+2x^3-20x^2+32x}{x^4}$$

donc
$$f'(x) = \frac{-10x^2 + 32x}{x^4} = \frac{x \times (-10x + 32)}{x \times x^3} = \frac{-10x + 32}{x^3}$$

donc $f'(x) = \frac{-10x + 32}{x^3}$.

donc
$$f'(x) = \frac{-10x + 32}{x^3}$$

2. (a) Sur [2; 8], $x^3 > 0$ donc f'(x) est du signe de -10x + 32 d'où le signe de f'(x), en notant que le signe de a = -10 < 0.

x	2		3,2		8
f'(x)		+	0	-	

(b) D'où le tableau de variation de la fonction f.

х	2		3,2		8
f'(x)		+	Q	_	
			0,5625		
f		/	i	/	
	0		·		0

3. (a) $f''(x) = \frac{20x - 96}{x^4}$, notons que $x^4 > 0$ sur [2; 8] donc f'' est du signe de 20x - 96 (qui s'annule pour 4,8) donc on peut dresser le tableau de variation de la fonction f' sur [2; 8].

х	2		4,8		8
f''		_	0	+	
f'		\	I	/	

La fonction f' est croissante sur [4,8; 8] donc la fonction f est convexe sur [4,8; 8].

(b) La fonction f' est décroissante sur [2; 4,8] puis croissante sur [4,8; 8] donc la fonction f est concave sur [2; 4,8] puis convexe sur [4,8; 8] donc le point de (%) d'abscisse 4,8 est un point d'inflexion.

[2; 4,8] puls convexe sur [4,8; 8] donc le point de (%) d'abscisse 4,8 est un point d'inflexion.

4. (a)
$$F'(x) = -1 + 10 \times \frac{1}{x} + 16 \times \left(-\frac{1}{x^2}\right) = -1 + \frac{10}{x} - \frac{16}{x^2} = \frac{-x^2 + 10x - 16}{x^2}$$
 donc $F'(x) = f(x)$ donc la fonction F est une primitive de f sur [2; 8].

(b)
$$I = \int_2^8 f(x) dx = [F(x)]_2^8 = F(8) - F(2) = -8 + 10 \ln 8 + 2 - (-2 + 10 \ln 2 + 8)$$

 $I = -8 + 10 \ln 8 + 2 + 2 - 10 \ln 2 - 8 = -12 + 10 \ln 8 - 10 \ln 2 \operatorname{donc} \left[I = -12 + 10 \ln 4 \approx 1,86 \right].$

Correction de l'exercice 4

- 1. (a) On cherche donc $p(D < 60) = p(20 < D < 60) = \frac{60 20}{120 20} = 0,4$ donc la probabilité que les quatre joueurs soient réunis au bout de 60 secondes est $\boxed{0,4}$.
 - (b) $E(D) = \frac{120 + 20}{2} = 70$ donc en moyenne les quatre joueurs sont réunis au bout de 70 secondes.
- 2. (a) J a pour espérance 120 et son écart-type est donc 20.

(b)
$$90 < J < 180 \iff 90 - 120 < J - 120 < 180 - 120 \iff \frac{-30}{20} < \frac{J - 120}{20} < \frac{60}{20}$$

 $\iff -1, 5 < \frac{J - 120}{20} < 3$
donc $90 < J < 180 \iff -1, 5 < \frac{J - 120}{20} < 3$

(c) X suit la loi normale d'espérance 0 et d'écart-type 1, soit la loi normale centrée réduite.

(d)
$$p(90 < J < 180) \approx 0.932$$
.

Correction de l'exercice 5

1	sommets	Α	В	С	D	Е	F	G	
1.	degres	2	4	5	5	4	4	2	
			1	0	1 1	0	0	0	0
				1 (1 1 0 1 1 0	1	1	0	0
				1	1 0	1	1	1	0

2. (a) La matrice
$$M = \begin{pmatrix} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 \end{pmatrix}$$

(b) Les chemins de longueur 3 qui relient un sommet à un autre sont comptés dans M^3 donc ici on calcule $M_{1:6}^3 = 5$; il ya donc 5 tels chemins :

ABCF; ABEF; ABDF; ACEF; ACDF.

(c) Par le cours, vu qu'il y a exactement deux sommets de degré impair, il y a une chaine eulèrienne commençant et finisssant par ces deux sommets C et D (ce n'est pas une chaine fermée), elle aura 13 arêtes car la somme des degrés vaut 26 : CDGFDEFCEBACBD.

3. (a) La matrice de routage
$$R = \begin{bmatrix} A & 8 & 4 \\ B & 8 & 8 & 4 & 12 \\ C & 4 & 8 & 16 & 12 & 20 \\ D & 4 & 16 & 12 & 24 & 20 \\ E & 12 & 12 & 12 & 12 \\ F & 20 & 24 & 4 & 8 \\ G & 20 & 8 \end{bmatrix}$$

1	4	В	С	D	E	F	G	départ
()							
		8_A	4_A	∞	∞	∞	∞	A
	/	12°C	/	20 _C	16 _C	24°C	∞	С
	/	/	/	12 _B	20 _B			В
	/	/	/	/	24_D	36_D	32_D	D
	/		. /	. /	/	20_E	32 _D	E
	/	/	/	/	/	/	28_F	F

(b) Finalement le candidat mettra 28 minutes par le trajet : ACEFG car 4 + 12 + 4 + 8 = 28.