CLASSE DE 3ème
Exercices corrigés de trigonométrie :
Résumé de cours de trigonométrie :
Historique
Les triangles rectangles ont été étudiés depuis l'Antiquité, en particulier par les mathématiciens grecs. La trigonométrie, qui traite du sinus, du cosinus et d'autres fonctions, a des racines historiques profondes, et son importance s'est accrue avec l'étude de l'astronomie.
Définition du triangle rectangle
Un triangle est dit rectangle si l'un de ses angles mesure \( 90^\circ \). Le côté opposé à cet angle droit est appelé l'hypoténuse. Les deux autres côtés sont appelés les côtés adjacents ou cathètes.
Théorème de Pythagore
Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Formellement, si \( ABC \) est un triangle rectangle en \( C \), alors :
\( AB^2 = BC^2 + AC^2 \)
Réciproque du Théorème de Pythagore
Si dans un triangle, le carré de la longueur d'un côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle.
Sinus et Cosinus dans le triangle rectangle
Dans un triangle rectangle, les notions de sinus et de cosinus peuvent être définies comme suit :
- Sinus de l'angle \( \alpha \) (noté \( \sin(\alpha) \)) : c'est le rapport entre le côté opposé à \( \alpha \) et l'hypoténuse. Dans le triangle rectangle ABC rectangle en A, \( \sin(\angle BAC) = \frac{AC}{AB} \).
- Cosinus de l'angle \( \alpha \) (noté \( \cos(\alpha) \)) : c'est le rapport entre le côté adjacent à \( \alpha \) et l'hypoténuse. Dans le triangle rectangle ABC rectangle en A, \( \cos(\angle BAC) = \frac{BC}{AB} \).
Exemple d'application
Considérons un triangle rectangle ABC avec \( AB = 5 \) cm (hypoténuse), \( AC = 3 \) cm et \( BC = 4 \) cm.
Si nous voulons déterminer le sinus et le cosinus de l'angle \( \alpha \) (soit \( \angle BAC \)) :
- \( \sin(\angle BAC) = \frac{AC}{AB} = \frac{3}{5} = 0.6 \)
- \( \cos(\angle BAC) = \frac{BC}{AB} = \frac{4}{5} = 0.8 \)
Copyright © 2006 - Toupty.com
Tous droits réservés - Mentions légales
Plan du site
Contenu
Description